CALCULUS: DEFINITE INTEGRALS

CONTENTS

The Fundamental Theorem of Calculus	123	1
Improper Integrals	126	
Area Bounded by a Curve	128	
Consumer Surplus and Producer Surplus	129	
Cost, Revenue and Profit Functions	132	
Frequency Functions and Probability	134	
Average Value of a Function	136	
Inventory Model	137	
Amount of an Annuity	138	
Consumption of a Natural Resource	138	
Other Economic Applications	139	

The **definite integral** is defined as $\int_a^b f(x) dx$. The numbers *a* and *b* are known as the lower and upper limits of the integral. Definite integrals have many applications, for example in finding areas bounded by curves and consumer surplus.

THE FUNDAMENTAL THEOREM OF CALCULUS

The fundamental theorem of calculus, expressed mathematically, states that

$$\int_a^b f(x)dx = [F(x)]_a^b = F(b) - F(a)$$

where $[F(x)]_a^b$ indicates that b and a are to be substituted successively for x.

Properties of Definite Integrals

- 1) $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$ 2) $\int_{a}^{a} f(x)dx = F(a) F(a) = 0$ 3) $\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$ 4) $\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx$

☑ EXAMPLE 10.1

Evaluate $\int_{-1}^{2} 5x \, dx$.

SOLUTION tips

First perform the integration and use this convention.

$$\int_{-1}^{2} 5x \, dx = \left[\frac{5x^2}{2} + c\right]_{-1}^{2}$$

Let *x* equal the value at the upper limit, then the value at the lower limit.

$$\int_{-1}^{2} 5x \, dx = \left[\frac{5(2)^2}{2} + c\right] - \left[\frac{5(-1)^2}{2} + c\right] = 10 - \frac{5}{2} = 7\frac{1}{2}$$

a)
$$\int_{1}^{4} \left(3\sqrt{x} + \frac{4}{\sqrt{x}} \right) dx$$
 b) $\int_{4}^{8} (4t-1)^{-\frac{1}{3}} dt$ c) $\int_{-1}^{1} x e^{4x^2 - 3} dx$

SOLUTION tips

a)
$$\int_{1}^{4} \left(3\sqrt{x} + \frac{4}{\sqrt{x}} \right) dx = \int_{1}^{4} \left(3x^{\frac{1}{2}} + 4x^{-\frac{1}{2}} \right) dx$$
$$= \left[\frac{3x^{\frac{3}{2}}}{\frac{3}{2}} + \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} \right]_{1}^{4} = \left[2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} \right]_{1}^{4}$$
$$= (2 \cdot 8 + 8 \cdot 2) - (2 \cdot 1 + 8 \cdot 1) = 22$$
b)
$$\int_{4}^{8} (4t - 1)^{-\frac{1}{3}} dt = \frac{1}{4} \cdot \frac{3}{2} \left[(4t - 1)^{\frac{2}{3}} \right]_{4}^{8} = \frac{3}{8} \left[(4(8) - 1)^{\frac{2}{3}} \right] - \frac{3}{8} \left[(4(4) - 1)^{\frac{2}{3}} \right] = 1.42$$

c) Use integration by substitution

Let $u = 4x^2 - 3$ then, $\frac{du}{dx} = 8x$ It follows that $\int_{-1}^{1} xe^{4x^2 - 3} dx = \int_{-1}^{1} xe^u \left(\frac{1}{8x} du\right) = \frac{1}{8} \int_{-1}^{1} e^u du = \left[\frac{1}{8} e^u\right]_{0}^{1}$ $= \left[\frac{1}{8}e^{4x^2 - 3}\right]_{0}^{1} = \left[\frac{1}{8}e^{4(1)^2 - 3}\right] - \left[\frac{1}{8}e^{4(0)^2 - 3}\right]$ $= \frac{e - e^{-3}}{8} = 0.33$

☑ EXAMPLE 10.3

Find the integrals

a)
$$\int_{0}^{1} \frac{x^{2} + 7x - 14}{x^{2} + 2x - 15} dx$$
 b) $\int_{1}^{3} \frac{4x}{(2x - 1)^{2}(x + 1)} dx$

Purchase the full book at: <u>https://unímath.5profz.com/</u>

We donate 0.5% of the book sales every year to charity, forever. When you buy University **Mathematics (I & II)** you are helping orphans and the less privileged.