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The definite integral is defined as ∫ 𝑓(𝑥)𝑑𝑥.  
𝑏

𝑎
 The numbers a and b are 

known as the lower and upper limits of the integral. Definite integrals have 
many applications, for example in finding areas bounded by curves and 
consumer surplus. 
 

THE FUNDAMENTAL THEOREM OF CALCULUS  
The fundamental theorem of calculus, expressed mathematically, states that  
 

 
 

where[𝐹(𝑥)]𝑎
𝑏  indicates that b and a are to be substituted successively for x.  

 
Properties of Definite Integrals 

1) ∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
= − ∫ 𝑓(𝑥)𝑑𝑥 

𝑎

𝑏
  

2) ∫ 𝑓(𝑥)𝑑𝑥 
𝑎

𝑎
= 𝐹(𝑎) − 𝐹(𝑎) = 0  

3) ∫ 𝑓(𝑥)𝑑𝑥 
𝑐

𝑎
= ∫ 𝑓(𝑥)𝑑𝑥 

𝑏

𝑎
+ ∫ 𝑓(𝑥)𝑑𝑥 

𝑐

𝑏
  

4) ∫ 𝑘𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
= 𝑘 ∫ 𝑓(𝑥)𝑑𝑥 

𝑏

𝑎
 

∫ 𝒇(𝒙)𝒅𝒙 
𝒃

𝒂

= [𝑭(𝒙)]𝒂
𝒃 = 𝑭(𝒃) − 𝑭(𝒂) 
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  EX A M P L E  10.1  

Evaluate ∫ 5𝑥 𝑑𝑥.   
2

−1

 

SO L U T I O N tips 

First perform the integration and use this convention. 

∫ 5𝑥 𝑑𝑥 
2

−1

= [
5𝑥2

2
+ 𝑐]

−1

2

 

Let x equal the value at the upper limit, then the value at the lower limit. 

∫ 5𝑥 𝑑𝑥 
2

−1

= [
5(2)2

2
+ 𝑐] − [

5(−1)2

2
+ 𝑐] = 10 −

5

2
= 7

1

2
 

 
  

  EX A M P L E  10.2  

Find 

a) ∫ (3√𝑥 +
4

√𝑥
)  𝑑𝑥

4

1

            b) ∫ (4𝑡 − 1)−
1

3 𝑑𝑡

8

4

           c) ∫ 𝑥𝑒4𝑥2−3𝑑𝑥
1

−1

 

  

S O L U T I O N tips 

a)  ∫ (3√𝑥 +
4

√𝑥
)  𝑑𝑥

4

1

= ∫ (3𝑥
1
2 + 4𝑥−

1
2)  𝑑𝑥

4

1

 

    = [
3𝑥

3
2

3
2

+
4𝑥

1
2

1
2

]

1

4

= [2𝑥
3
2 + 8𝑥

1
2]

1

4

 

                        = (2 ∙ 8 + 8 ∙ 2) − (2 ∙ 1 + 8 ∙ 1) = 22 

b)  ∫ (4𝑡 − 1)−
1
3 𝑑𝑡

8

4

=
1

4
.
3

2
[(4𝑡 − 1)

2
3]

4

8

=
3

8
[(4(8) − 1)

2
3] −

3

8
[(4(4) − 1)

2
3] = 1.42 

c) Use integration by substitution 

    Let 𝑢 = 4𝑥2 − 3 then, 
𝑑𝑢

𝑑𝑥
= 8𝑥  𝑑𝑥 =

1

8𝑥
𝑑𝑢 

    It follows that  

∫ 𝑥𝑒4𝑥2−3𝑑𝑥
1

−1

= ∫ 𝑥𝑒𝑢 (
1

8𝑥
𝑑𝑢)

1

−1

=
1

8
∫ 𝑒𝑢𝑑𝑢

1

−1

= [
1

8
 𝑒𝑢]

0

1

 

                            = [
1

8
𝑒4𝑥2−3]

0

1

 = [
1

8
𝑒4(1)2−3] − [

1

8
𝑒4(0)2−3] 

                                       =
𝑒 − 𝑒−3

8
= 0.33 

 
 
  EX A M P L E  10.3  

Find the integrals 

a) ∫
𝑥² + 7𝑥 − 14

𝑥² + 2𝑥 − 15
𝑑𝑥

1

0

                     b) ∫
4𝑥

(2𝑥 − 1)2(𝑥 + 1)
𝑑𝑥

3

1
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