QUADRATIC FORMS, DEFINITE MATRICES, EIGENVALUES & HESSIAN

13

CONTENTS

Quadratic Forms and Definite Matrix	169	
Eigenvalues and Eigenvectors	172	
Unconstrained Optimization Using the Bordered Hessian	174	
Constrained Optimization Using the Bordered Hessian	179	

QUADRATIC FORMS AND DEFINITE MATRIX

The quadratic form of an $n \times n$ symmetric matrix A is given by

$$Q(x) = x^T A x$$

where *x* is a vector of variables, and *A* is a symmetric matrix.

For example, consider the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$

The quadratic form is given by

$$Q(x) = x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$
$$= x_{1}^{2} + 4x_{1}x_{2} + x_{2}^{2}$$

Also consider the following matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

The quadratic form is given by

$$Q(x) = x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$
$$= x_{1}^{2} + 2x_{2}^{2} + 3x_{3}^{2}$$

The quadratic form Q(x) is:

- Positive definite if Q(x) > 0 for all $x \neq 0$.
- Negative definite if Q(x) < 0 for all $x \neq 0$.
- Indefinite if Q(x) assumes both positive and negative values.

Also, Q(x) is said to be positive definite if $Q(x) \ge 0$ for all x, and negative definite if $Q(x) \le 0$ for all x.

The matrix *A* will determine to which one of the above definitions the quadratic form will belong. We can use either of the two tests:

- 1. Discriminant test
- 2. Eigenvalues test

For example, matrix A is positive definite if and only if all the eigenvalues are positive (see Table 13.1). The determinant of a matrix is the product of its eigenvalues. So, if all the eigenvalues are positive, then the discriminant/determinant is also positive.

Definiteness	Discriminant/Determinant of Principal Minors	Eigenvalues
positive definite	$D_i > 0$, $i = 1n$	all $\mathbf{r}_i > 0$
positive semidefinite	$D_i \ge 0$, $i = 1n$	all $\mathbf{r}_i \ge 0$
negative definite	$D_1 < 0$, $D_2 > 0$, $D_3 < 0$	all $\mathbf{r}_i < 0$
negative semidefinite	$D_1 \leq 0$, $D_2 \geq 0$, $D_3 \leq 0$	all $\mathbf{r}_i \leq 0$
indefinite	none of the above	some $\mathbf{r}_i \ge 0$, some $\mathbf{r}_i \le 0$

Table 13.1 Conditions for Definiteness

☑ EXAMPLE 13.2

Write $Q = 5x_1^2 + 4x_2^2 - 4x_1x_2$ in the form $Q(x) = x^T A x$, where A is a 2×2 matrix.

SOLUTIONtips

The cross term is $-4x_1x_2 = -2x_1x_2 - 2x_2x_1$. Hence

$$Q(x) = x^{T}Ax = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 5 & -2 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

NOTE: The coefficients of the squares appear on the main diagonal while the coefficients of the cross terms are neatly divided among two positions to give a symmetric matrix. Hence this matrix is referred to as the matrix of the quadratic form Q.

Purchase the full book at: https://unimath.5profz.com/

We donate 0.5% of the book sales every year to charity, forever. When you buy University **Mathematics (I & II)** you are helping orphans and the less privileged.