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QUADRATIC FORMS AND DEFINITE MATRIX  
The quadratic form of an 𝑛 × 𝑛 symmetric matrix A is given by 

𝑄(𝑥) = 𝑥𝑇𝐴𝑥 

where 𝑥 is a vector of variables, and A is a symmetric matrix. 

For example, consider the matrix 

𝐴 = [
1 2
2 1

] 

The quadratic form is given by 

𝑄(𝑥) = 𝑥𝑇𝐴𝑥 = [𝑥1 𝑥2] [
1 2
2 1

] [
𝑥1

𝑥2
] 

           = 𝑥1
2 + 4𝑥1𝑥2 + 𝑥2

2 

Also consider the following matrix 

𝐴 = [
1 0 0
0 2 0
0 0 3

] 

The quadratic form is given by 

𝑄(𝑥) = 𝑥𝑇𝐴𝑥 = [𝑥1 𝑥2 𝑥3] [
1 0 0
0 2 0
0 0 3

] [

𝑥1

𝑥2

𝑥3

] 

          = 𝑥1
2 + 2𝑥2

2 + 3𝑥3
2  
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The quadratic form 𝑄(𝑥) is: 

• Positive definite if 𝑄(𝑥) > 0 for all 𝑥 ≠ 0. 

• Negative definite if 𝑄(𝑥) < 0 for all 𝑥 ≠ 0. 

• Indefinite if 𝑄(𝑥) assumes both positive and negative values. 

Also, 𝑄(𝑥) is said to be positive definite if 𝑄(𝑥) ≥ 0 for all 𝑥, and negative 
definite if 𝑄(𝑥) ≤ 0 for all 𝑥. 

The matrix 𝐴 will determine to which one of the above definitions the quadratic 
form will belong. We can use either of the two tests: 

1. Discriminant test 
2. Eigenvalues test 

For example, matrix A is positive definite if and only if all the eigenvalues are 
positive (see Table 13.1). The determinant of a matrix is the product of its 
eigenvalues. So, if all the eigenvalues are positive, then the 
discriminant/determinant is also positive.  

Table 13.1 Conditions for Definiteness 

Definiteness 
Discriminant/Determinant 

of Principal Minors 
Eigenvalues 

positive definite Di > 0 , i = 1…n all ri > 0 

positive semidefinite Di ≥ 0 , i = 1…n all ri ≥ 0 

negative definite D1 < 0 , D2 > 0 , D3 < 0… all ri < 0 

negative semidefinite D1 ≤ 0 , D2 ≥ 0 , D3 ≤ 0… all ri ≤ 0 

indefinite none of the above 
some ri ≥ 0, some ri ≤ 

0 

 

  EX A M P L E  13.2  

Write 𝑄 = 5𝑥1
2 + 4𝑥2

2 − 4𝑥1𝑥2 in the form 𝑄(𝑥) = 𝑥𝑇𝐴𝑥, where 𝐴 is a 2 × 2 
matrix.  

SO L U T I O N tips 

The cross term is −4𝑥1𝑥2 = −2𝑥1𝑥2 − 2𝑥2𝑥1. Hence 

𝑄(𝑥) = 𝑥𝑇𝐴𝑥 = [𝑥1 𝑥2] [
5 −2

−2 4
] [

𝑥1

𝑥2
] 

NOTE: The coefficients of the squares appear on the main diagonal while the 
coefficients of the cross terms are neatly divided among two positions to give 
a symmetric matrix. Hence this matrix is referred to as the matrix of the 
quadratic form Q. 
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