LINEAR PROGRAMMING: THE SIMPLEX METHOD

Contents	
The Simplex Method	217
Steps in the simplex method	217
Maximization	217
Minimization	224

THE SIMPLEX METHOD

Simplex method was developed by George Dantzig in 1949. It is an iterative procedure for solving LP in a finite number of steps, in such a way that the value of the objective function at each step is optimized.

Steps in the simplex method:

- Convert the constraints into equations by introducing slack variables.
- Set up the initial tableau.
- Perform the pivot operation.
- Create a new tableau.
- Check for optimality. If optimal, then identify optimal values.

MAXIMIZATION

The simplex method is an effective algorithm for solving linear programming problems, especially maximization of a linear function subject to linear constraints.

☑ EXAMPLE 17.1

Musically Ltd produces only two instruments: Piano and Guitar. Both requires strings and boards only. In production, each Piano requires 1 string and 1 board while each Guitar requires 1 string and 2 boards. The company has a total of 40 strings and 75 boards. On each sale, the company makes a profit of \$10 per Piano sold and \$12 per Guitar sold. Now, the company wishes to maximize its profit. How many Pianos and Guitars should it produce respectively?

SOLUTION tips

Let x_1 equals the number of Pianos produced and x_2 the number of Guitars produced.

So, the decision variables are: x_1 and x_2 .

On each sale, the company makes a profit of \$10 per Piano sold and \$12 per Guitar sold.

Thus, the objective function is:

 $Z = 10x_1 + 12x_2$

In production, each Piano requires 1 unit of strings and 1 unit of boards while each Guitar requires 1 unit of strings and 2 units of boards. The company has a total of 40 units of strings and 75 units of boards.

Therefore, the constraints are

 $\begin{array}{l} x_1 + x_2 \le 40 \\ x_1 + 2x_2 \le 75 \end{array}$

Number of Pianos and Guitars should be greater than or equal to 0. So, the non-negativity restriction:

 $x_1 \ge 0, x_2 \ge 0$

Therefore, the LP problem is Max $Z = 10x_1 + 12x_2$ subject to $\begin{cases} x_1 + x_2 \le 40 & \text{(units of strings)} \\ x_1 + 2x_2 \le 75 & \text{(units of boards)} \end{cases}$ $x_1 \ge 0, x_2 \ge 0$

Now, to apply the simplex method, introduce slack variables to convert the inequalities into equalities.

 $x_1 + x_2 + s_1 = 40$ $x_1 + 2x_2 + s_2 = 75$ s_1 and s_2 are slack variables where $s_1 \ge 0, s_2 \ge 0$. **Slack variables** represent the amount of an unused resource.

Modify the objective function so that the RHS is zero: $Z = 10x_1 + 12x_2 \implies Z - 10x_1 - 12x_2 = 0$

Convert the system of equations into a tableau in the following format.

Tableau I								
	Basic	χ_1	$x_2\downarrow$	S_1	S_2	RHS	Ratio	
	S 1	1	1	1	0	40	40 / 1 = 40	
	S_2	1	2	ο	1	75	75 / 2 = 37.5	
	Z	-10	-12	0	0	0		

Perform a pivot operation if there are negative entries in the Z row. The current tableau is only optimal if and only if every entry in the Z row is nonnegative.

Purchase the full book at: https://unimath.5profz.com/

We donate 0.5% of the book sales every year to charity, forever. When you buy University **Mathematics (I & II)** you are helping orphans and the less privileged.