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GENERAL FORMULA  
A differential equation is a mathematical equation that relates a function with 
its derivatives. 
Suppose we are given 

𝑑𝑦

𝑑𝑡
= 2𝑦 

It is a first-order linear differential equation: first-order because it 
involves only the first derivative (𝑑𝑦/𝑑𝑡); linear because neither y nor its 
derivative is raised to any power other than 1.  
 
The general form of a first-order linear differential equation is 

𝑑𝑦

𝑑𝑡
+ 𝑎𝑦 = 𝑏 

where a and b may be constants or functions of time. 

The formula for a general solution is 

 

where A is an arbitrary constant.  
The solution consists of two components on the right-hand side: a 

complementary function (𝑒−∫ 𝑎𝑑𝑡𝐴) and a particular integral 

(𝑒−∫ 𝑎𝑑𝑡∫ 𝑏𝑒∫ 𝑎𝑑𝑡). The particular integral 𝑦𝑝 represents the intertemporal 

𝒚(𝒕) = 𝒆−∫ 𝒂𝒅𝒕 (𝑨 + ∫ 𝒃𝒆∫ 𝒂𝒅𝒕𝒅𝒕) 
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equilibrium level of y, and the complementary function 𝑦𝑐, the deviations of the 
time path from that equilibrium. For y(t) to be dynamically stable, 𝑦𝑐  must 
approach zero as t approaches infinity.  

It is important to note that the solution of the differential equation is a function 
of t (a time path: a corresponding value of y can be calculated by substituting for 
a particular value of t), and the solution y(t) contains no derivatives.  
 
NOTE: The solution of a differential equation can always be checked by 
differentiation. 
 

  EX A M P L E  21.1  

Solve the equation 
𝑑𝑦

𝑑𝑡
+ 2𝑦 = 6, with the initial condition 𝑦(0) = 4. 

SO L U T I O N tips 

Compare 
𝑑𝑦

𝑑𝑡
+ 2𝑦 = 6 to 

𝑑𝑦

𝑑𝑡
+ 𝑎𝑦 = 𝑏. 

Since 𝑎 = 2 and 𝑏 = 6 

𝑦(𝑡) = 𝑒−∫ 2𝑑𝑡(𝐴 + ∫ 6𝑒∫ 2𝑑𝑡𝑑𝑡)  

∫ 2𝑑𝑡 = 2𝑡 + 𝑐. Since c is absorbed by A, 

𝑦(𝑡) = 𝑒−2𝑡(𝐴 + ∫ 6𝑒2𝑡𝑑𝑡)                                                                         

Integrate the remaining integral: ∫ 6𝑒2𝑡𝑑𝑡 = 3𝑒2𝑡 + 𝑐. Ignore the constant again, 

𝑦(𝑡) = 𝑒−2𝑡(𝐴 + 3𝑒2𝑡) = 𝐴𝑒−2𝑡 + 3            Since 𝑒−2𝑡𝑒2𝑡 = 𝑒0 = 1. 

As 𝑡 → ∞, 𝑦𝑐 = 𝐴𝑒−2𝑡 → 0  and y(t) approaches 𝑦𝑝 = 3, the intertemporal 

equilibrium level. Thus, y(t) is dynamically stable. Note that this is a general 
solution considering that A is not specified. The definite solution is calculated as 
follows:  

 At 𝑡 = 0, 𝑦(0) = 4  such that 

4 = 𝐴𝑒−2(0) + 3        → 4 = A + 3  Since e0 = 1 

𝐴 = 1  

Substitute A = 1 in 𝑦(𝑡) = 𝐴𝑒−2𝑡 + 3, the definite solution is 𝑦 = 𝑒−2𝑡 + 3. 

 

  EX A M P L E  21.2  

Solve the equation 
𝑑𝑦

𝑑𝑡
= 5. 

SO L U T I O N tips 

Compare 
𝑑𝑦

𝑑𝑡
= 5 to 

𝑑𝑦

𝑑𝑡
+ 𝑎𝑦 = 𝑏. Here 𝑎 =  0 and 𝑏 =  5. Thus, 

𝑦(𝑡) = 𝑒−∫ 0𝑑𝑡(𝐴 + ∫ 5𝑒∫ 0𝑑𝑡𝑑𝑡)  
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