DIFFERENTIAL EQUATIONS

Contents	
	General Formula (Micro) Dynamic Model of a Market Exact Differential Equations and Partial Integration Integrating Factors

GENERAL FORMULA

Separation of Variables

A **differential equation** is a mathematical equation that relates a function with its derivatives.

275 278 281

284

286

291

Suppose we are given

Phase Diagrams

$$\frac{dy}{dt} = 2y$$

It is a **first-order linear differential equation**: first-order because it involves only the first derivative (dy/dt); linear because neither y nor its derivative is raised to any power other than 1.

The general form of a first-order linear differential equation is

$$\frac{dy}{dt} + ay = b$$

where *a* and *b* may be constants or functions of time.

The formula for a general solution is

$$y(t) = e^{-\int a dt} \left(A + \int b e^{\int a dt} dt \right)$$

where *A* is an arbitrary constant.

The solution consists of two components on the right-hand side: a **complementary function** $(e^{-\int adt}A)$ and a **particular integral** $(e^{-\int adt}\int be^{\int adt})$. The particular integral y_p represents the intertemporal

equilibrium level of y, and the complementary function y_c , the deviations of the time path from that equilibrium. For y(t) to be dynamically stable, y_c must approach zero as t approaches infinity.

It is important to note that the solution of the differential equation is a function of t (a time path: a corresponding value of y can be calculated by substituting for a particular value of t), and the solution y(t) contains no derivatives.

NOTE: The solution of a differential equation can always be checked by differentiation.

☑ EXAMPLE 21.1

Solve the equation $\frac{dy}{dt} + 2y = 6$, with the initial condition y(0) = 4.

SOLUTION tips

Compare $\frac{dy}{dt} + 2y = 6$ to $\frac{dy}{dt} + ay = b$. Since a = 2 and b = 6

$$y(t) = e^{-\int 2dt} \left(A + \int 6e^{\int 2dt} dt \right)$$

 $\int 2dt = 2t + c$. Since *c* is absorbed by A,

 $y(t) = e^{-2t}(A + \int 6e^{2t}dt)$

Integrate the remaining integral: $\int 6e^{2t} dt = 3e^{2t} + c$. Ignore the constant again,

$$y(t) = e^{-2t}(A + 3e^{2t}) = Ae^{-2t} + 3$$
 Since $e^{-2t}e^{2t} = e^0 = 1$.

As $t \to \infty$, $y_c = Ae^{-2t} \to 0$ and y(t) approaches $y_p = 3$, the intertemporal equilibrium level. Thus, y(t) is dynamically stable. Note that this is a general solution considering that A is not specified. The definite solution is calculated as follows:

At
$$t = 0$$
, $y(0) = 4$ such that
 $4 = Ae^{-2(0)} + 3 \rightarrow 4 = A + 3$ Since $e^0 = 1$
 $A = 1$

Substitute A = 1 in $y(t) = Ae^{-2t} + 3$, the definite solution is $y = e^{-2t} + 3$.

☑ EXAMPLE 21.2

Solve the equation $\frac{dy}{dt} = 5$.

SOLUTIONtips

Compare
$$\frac{dy}{dt} = 5$$
 to $\frac{dy}{dt} + ay = b$. Here $a = 0$ and $b = 5$. Thus,
 $y(t) = e^{-\int 0dt} (A + \int 5e^{\int 0dt} dt)$

Purchase the full book at: https://unimath.5profz.com/

We donate 0.5% of the book sales every year to charity, forever. When you buy University **Mathematics (I & II)** you are helping orphans and the less privileged.