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Optimal control theory, an extension of the calculus of variations, is a branch of 
mathematics that deals with finding the best way to control a dynamic system 
over time such that an objective function is optimized. It is useful for solving 
dynamic optimization problems expressed in continuous time.  The system being 
controlled is typically described by a set of differential equations, and the control 
policy is a function that specifies the inputs to the system over time.  
For example, the dynamical system might be a nation's economy, with the 
objective to minimize inflation; the controls in this case could be interest rate 
and money supply. For example, the dynamical system might be a firm's flow of 
profits over time, with the objective to maximize the total profits; the controls in 
this case could be the output and price.  
Largely based on the work of Lev Pontryagin and Richard Bellman in the 1950s, 
the optimal control theory has numerous applications in science, engineering 
and operations research. It is used to design controllers for systems such as 
aircraft, spacecraft, and robots, and to optimize resource allocation in industries 
such as energy and transportation. 
A control problem includes a functional that is a function of state 
and control variables. An optimal control is a set of differential equations that 
describe the paths of the control variables that minimize the functional. 
The optimal control is derivable using Pontryagin's maximum principle (a 
necessary condition), or by solving the Hamilton-Jacobi-Bellman equation (a 
sufficient condition). In optimal control theory, the objective is to find the 
optimal time path for the control variable, y. The state variable, x, helps us 
to predict the behavior of the control variable and has equations of motion 
(or transition) set equal to x’.  
Optimal control theory problems could involve continuous time, a finite time 
horizon, and fixed endpoints. A standard optimal control problem is of the form: 
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Maximize  𝑈 = ∫ 𝑓[𝑥(𝑡), 𝑦(𝑡), 𝑡] 𝑑𝑡
𝑇

0
 

subject to 𝑥′ = 𝑔[𝑥(𝑡), 𝑦(𝑡), 𝑡]   (1) 
  𝑥(0) = 𝑥0    𝑥(𝑇) = 𝑥𝑇 

where U is the functional to be optimized; y(t) the control variable selected or 
controlled to optimize U; x(t) the state variable which varies over time consistent 
with the differential equation set equal to x’ in the constraint; and t time.  

THE HAMILTONIAN &  THE PONTRYAGIN ’S 

MAXIMUM PRINCIPLE  
The Hamiltonian function, similar to the Lagrangian function, is a technique 
that combines the functional (being optimized) with the state variable 
(describing the constraint or constraints) into a single equation.  
In line with (1), the Hamiltonian is  
𝐻[𝑥(𝑡), 𝑦(𝑡), 𝜆(𝑡), 𝑡] = 𝑓[𝑥(𝑡), 𝑦(𝑡), 𝑡] + 𝜆(𝑡)𝑔[𝑥(𝑡), 𝑦(𝑡), 𝑡]  (2) 
where H denotes the Hamiltonian, 𝜆(t) is the costate variable (similar to the 
Lagrangian multiplier) which represents the marginal value or shadow price of 
the state variable x(t).  
 
Pontryagin’s Maximum Principle  
For maximization of the Hamiltonian in (2), the necessary conditions are derived 
from the maximum principle: 

i. 
𝜕𝐻

𝜕𝑦
= 0  

ii. 
𝜕𝑥

𝜕𝑡
= 𝑥′ =

𝜕𝐻

𝜕𝜆
   state equation 

iii. 
𝜕𝜆

𝜕𝑡
= 𝜆′ = −

𝜕𝐻

𝜕𝑥
  costate equation 

iv. 𝑥(0) = 0 𝑥(𝑇) = 𝑥𝑇 boundary condition 
v. 𝜆(𝑇) = 0   transversality condition 

The first three conditions are known as the maximum principle. The two 
equations of motion in conditions (ii) and (iii) are referred to as the Hamiltonian 
system or the canonical system. Condition (v) is applicable to a free endpoint 
problem only.  
For minimization of the Hamiltonian, multiply the objective function by -1. 
 
The sufficient conditions  
The sufficient conditions are fulfilled if: 

1. The objective functional and the constraint are continuously differentiable 
and jointly concave in x and y. 

2. 𝜆(𝑡) ≥ 0, when the constraint is non-linear in x or y. If the constraint is 
linear, 𝜆 can assume any sign. 

A linear function is both concave and convex, but neither strictly concave 
nor strictly convex. For a nonlinear function, the discriminant can test for 
joint concavity.  

Given the discriminant of the second-order derivatives of a function, 

|𝐷| = |
𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
|  
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