PARTIAL FRACTIONS & BINOMIAL SERIES

• • • • • • • •			
	Partial Fractions	96	
	Binomial Theorem	100	
	Applications of Partial Fractions to Series Expansions	103	

PARTIAL FRACTIONS

CONTENTS

Partial fraction decomposition or partial fraction expansion is the process of expressing a rational function (where the numerator and the denominator are both polynomials) as a sum of its initial polynomial fractions. The concept was discovered by both Johann Bernoulli and Gottfried Leibniz independently in 1702.

Form of Algebraic Fraction	Form of Partial Fractions
$\frac{px+q}{(x+a)(x+b)}$	$\frac{A}{(x+a)} + \frac{B}{(x+b)}$
$\frac{px+q}{(x+a)^2}$	$\frac{A}{(x+a)} + \frac{B}{(x+b)^2}$
$\frac{px^2 + qx + r}{(x+a)(x+b)(x+c)}$	$\frac{A}{(x+a)} + \frac{B}{(x+b)} + \frac{C}{(x+c)}$
$\frac{px^2 + qx + r}{(x+a)^2(x+b)}$	$\frac{A}{(x+a)} + \frac{B}{(x+a)^2} + \frac{C}{(x+b)}$
$\frac{px^2 + qx + r}{(x+a)(x^2 + bx + c)}$	$\frac{A}{(x+a)} + \frac{Bx+C}{(x^2+bx+c)}$
	where $x^2 + bx + c$ cannot be factorised.

For an algebraic fraction to be expressed in partial fractions, the numerator must be at least one degree less than the denominator.

EXAMPLE 8.1 TWO LINEAR FACTORS				
Express in partial fractions				
7x + 16				
$x^2 + 2x - 8$				
SOLUTION tips				
Factorise $x^2 + 2x - 8$				
7x + 16 A B				
$\frac{1}{x^2 + 2x - 8} = \frac{1}{x + 4} + \frac{1}{x - 2}$				
Multiply both sides by $(x + 4)(x - 2)$				
7x + 16 = A(x - 2) + B(x + 4)				
Equate the first factor to zero: $(x - 2) = 0 \rightarrow x = 2$				
When $x = 2$;				
7(2) + 16 = A(2 - 2) + B(2 + 4)				
14 + 16 = A(0) + 6B				
$30 = 6B \rightarrow B = 5$				
Equate the second factor to zero: $(x + 4) = 0 \Rightarrow x = -4$				
When $x = -4$;				
7(-4) + 16 = A(-4 - 2) + B(-4 + 4)				
-28 + 16 = A(-6) + B(0)				
$-12 = -6A \longrightarrow A = 2$				
Therefore				
7x + 16 2 5				
$\frac{1}{x^2+2x-8} - \frac{1}{x+4} + \frac{1}{x-2}$				
EXAMPLE 8.2 REPEATED FACTORS				
Express in partial fractions				

$$\frac{2x-5}{(x-3)^2}$$

SOLUTION tips

 $\frac{2x-5}{(x-3)^2} = \frac{A}{x-3} + \frac{B}{(x-3)^2}$ Multiply both sides by the common denominator $(x-3)^2$ 2x-5 = A(x-3) + B $(x-3) = 0 \rightarrow x = 3$ 2(3) - 5 = A(3-3) + B $1 = A(0) + B \rightarrow B = 1$ Substituting B = 1 in (i) 2x-5 = A(x-3) + 1

Purchase the full book at: https://unimath.5profz.com/

We donate 0.5% of the book sales every year to charity, forever. When you buy University **Mathematics (I & II)** you are helping orphans and the less privileged.