

CONTENTS

Integration	106
Indefinite Integrals	107
Integration by Substitution	109
Integration by Parts	114
Integration by Partial Fractions	119

INTEGRATION

We know from the previous chapters that a function, y = f(x), can be differentiated to obtain the derivative, $\frac{dy}{dx}$. The reverse process of obtaining f(x) from knowledge of its derivative is called integration.

The process of **integration** (or **antidifferentiation**) undoes the process of differentiation. For example, if we differentiate the function $y = x^2$, we obtain $\frac{dy}{dx} = 2x$. Integration reverses this process, and we say that the integral of 2x is x^2 . There are many functions we can differentiate to give 2x: $x^2 - 1$, $x^2 + 8$, $x^2 + 0.2$. Because of this, we include an arbitrary constant, c. We say that 2x is integrated with respect to x to give $x^2 + c$.

The symbol for integration is \int , known as an integral sign. We can therefore write:

$$\int 2x \, dx = x^2 + c$$

dx is a notation which indicates the name of the variable involved. An arbitrary constant of integration, *c*, is also included. Arbitrary means 'can take any value'.

Based on the results they produce, integrals are divided into two classes: definite and indefinite integrals. A **definite integral** has upper and lower limits on the integrals; it's called definite because, at the end of the solution, we have a definite number which represents the area under the curve f(x) from x = a to x = b. On the other hand, an **indefinite integral** is a function; it has no limits and thus have a constant of integration.

	Integrals	Derivatives
Basic functions	$\int x^n dx$	$\frac{x^{n+1}}{n+1} + c, \ n \neq -1$
	$\int (ax+b)^n dx$	$\frac{(ax+b)^{n+1}}{a(n+1)} + c, \ n \neq -1$
	$\int \frac{1}{x} dx$	$\ln x + c$
	$\int \frac{d}{ax+b} dx$	$\frac{d}{a}\ln ax+b +c$
Exponential functions	$\int e^{ax} dx$	$\frac{1}{a}e^{ax} + c$
	$\int a^x dx$	$\frac{a^x}{\ln a} + c$
Trigonometric functions	$\int \sin x dx$	$-\cos x + c$
	$\int \cos x dx$	$\sin x + c$
	$\int \tan x dx$	-ln cosx +c
Logarithmic functions	$\int \ln x \ dx$	$x \ln x - x + c$
	$\int \log_a x dx$	$x \log_a x - \frac{x}{\ln a} + c$
Rational functions	$\int \frac{1}{1+x^2} dx$	$\arctan x + c = \tan^{-1} x + c$
	$\int \frac{1}{\sqrt{1+x^2}} dx$	$\arcsin x + c = \sin^{-1} x + c$
	$\int \frac{1}{ x \sqrt{x^2 - 1}} dx$	$\operatorname{arcsec} x + c = \operatorname{sec}^{-1} x + c$

Table 9.1 Rules of Integration

INDEFINITE INTEGRALS

The result of finding an indefinite integral is usually a function plus a constant of integration. For example:

$$\int x^2 \, dx = \frac{x^{2+1}}{2+1} + c = \frac{x^3}{3} + c$$

Purchase the full book at: <u>https://unimath.5profz.com/</u>

We donate 0.5% of the book sales every year to charity, forever. When you buy University **Mathematics (I & II)** you are helping orphans and the less privileged.