


ALGEBRA, FACTORIZATION & SURDS

CONTENTS

Algebra	26
Factorization	28
Surds	29

ALGEBRA

Algebra is a branch of mathematics in which letters and symbols are used to represent numbers and quantities in formulae and equations. The most common letters in use are *x* and *y*. An **algebraic expression** is simply a combination of these letters, brackets and other mathematical symbols.

Algebraic expression notation:

- i. power (exponent)
- ii. coefficient
- iii. term
- iv. operator
- v. constant term

You can work out operations on algebraic expressions (and all mathematical calculations) in the following order:

 $\begin{array}{lll} \text{Brackets 1}^{\text{st}} & \text{(B)} \\ \text{Indices 2}^{\text{nd}} & \text{(I)} \\ \text{Division and Multiplication 3}^{\text{rd}} & \text{(DM)} \\ \text{Addition and Subtraction 4}^{\text{th}} & \text{(AS)} \end{array}$

This is easily remembered using the acronym BIDMAS.

Addition and Subtraction of Like Terms

Like terms are multiples of the same quantity. Examples of like terms are:

ax and bx are multiples of x. x^2y , $-3x^2y$, $-5yx^2$ are multiples of x^2y

 abc^2 , $-2abc^2$, $habc^2$ are multiples of abc^2

Like terms are added or subtracted to simplify expressions.

Removing Brackets: a(b+c)

To remove brackets is to multiply out.

For example: $3(1+2) = 3 \times 1 + 3 \times 2 = 3 + 6 = 9$

 $4(x + y) = 4 \times x + 4 \times y = 4x + 4y$ $a(b + c) = a \times b + a \times c = ab + ac$

Table 3.1 Rules of Algebra

Distributive law: a(b + c) = ab + ac

Difference of 2 squares: $(a + b)(a - b) = a^2 - b^2$

Perfect squares: $(a \pm b)^2 = a^2 \pm 2ab + b^2$

Sums of 2 cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

Difference of 2 cubes: $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

Removing Brackets: (a+b)(c+d)

$$(a+b)(c+d) = a(c+d) + b(c+d) = ac + ad + bc + bd$$

☑ EXAMPLE 3.1

Simplify

a)
$$27 \times \left(1 - \frac{1}{3}\right)$$
 b) $11 - 2(y+3)$ c) $\frac{3a^3b}{12ab^2}$

SOLUTIONtips

a) Using the distributive law

$$27 \times \left(1 - \frac{1}{3}\right) = 27 \times 1 - 27 \times \frac{1}{3}$$

$$= 27 - 9 = 18$$
b) $11 - 2(y + 3) = 11 - 2 \times y - 2 \times 3$

$$= 11 - 2y - 6 = 5 - 2y$$

c)
$$\frac{3a^3b}{12ab^2} = \frac{3}{12} \times \frac{a^3}{a^1} \times \frac{b^1}{b^2}$$
$$= \frac{1}{4}a^{3-1}b^{1-2}$$
$$= \frac{1}{4}a^2b^{-1} = \frac{a^2}{4b}$$

☑ EXAMPLE 3.2

Simplify a) $(a + 3)^2$ b) (3m + 4)(3m - 4)

SOLUTIONtips

a)
$$(a + 3)^2 = (a + 3)(a + 3) = a(a + 3) + 3(a + 3)$$

= $a^2 + 3a + 3a + 9 = a^2 + 6a + 9$

b) Note that $(a + b)(a - b) = a^2 - b^2$ Thus, $(3m + 4)(3m - 4) = (3m)^2 - 4^2 = 9m^2 - 16$

☑ EXAMPLE 3.3

Simplify

a)
$$\frac{4}{x-2} \div \frac{7}{2x-4}$$
 b) $\frac{2}{x+1} + \frac{3}{x-1}$

SOLUTIONtips

a)
$$\frac{4}{x-2} \div \frac{7}{2x-4} = \frac{4}{x-2} \times \frac{2x-4}{7}$$
$$= \frac{4(2x-4)}{7(x-2)} = \frac{4 \times 2(x-2)}{7(x-2)} = \frac{8}{7}$$
b)
$$\frac{2}{x+1} + \frac{3}{x-1} = \frac{2(x-1) + 3(x+1)}{x^2 - 1}$$
$$= \frac{2x-2 + 3x + 3}{x^2 - 1} = \frac{5x+1}{x^2 - 1}$$

WORKOUT 3.1

a)
$$-a^2(4+3ab-c)$$
 b) $(x-4)(y+3)$

b)
$$(x-4)(y+3)$$

c)
$$(a+4)(2a-3b-1)$$

a)
$$\frac{-4x + 5y}{2} + 3x - 6y$$

b)
$$\frac{3x}{1-x} + 3$$

a)
$$\frac{-4x + 5y}{2} + 3x - 6y$$
 b) $\frac{3x}{1 - x} + 3$ c) $\frac{5(3 - x)}{6} + \frac{3(x - 5)}{2} + \frac{x}{3}$ d) $\frac{2x - 1}{2x + 3} + \frac{1}{3}$ e) $\frac{2}{x - 5} + \frac{1}{x + 2}$ f) $\frac{3}{3 - x} \div \frac{15}{5 + x}$

d)
$$\frac{2x-1}{2x+3} + \frac{1}{3}$$

e)
$$\frac{2}{x-5} + \frac{1}{x+2}$$

f)
$$\frac{3}{3-x} \div \frac{15}{5+x}$$

c)
$$2a^2 - 3ab + 7a - 12b - 4$$

2. a)
$$\frac{2x - 7y}{2}$$

a)
$$\frac{2x - 7y}{2}$$
 b) $\frac{3}{1 - x}$ c) $x - 5$
d) $\frac{8x}{3(2x + 3)}$ e) $\frac{3}{1 - x}$ f) $\frac{5 + x}{5(-x + 3)}$

f)
$$\frac{5+x}{5(-x+3)}$$

Purchase the full book at:

https://unimath.5profz.com/

We donate 0.5% of the book sales every year to charity, forever. When you buy University Mathematics (I & II) you are helping orphans and the less privileged.