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Complex numbers are numbers that include a real part and an imaginary part,
and they can be represented in the form a + bi, where a and b are real numbers,
and i is the imaginary unit, satisfying the equation i? = —1.

If we have x? + 1 = 0, there is no solution for x in real numbers. The set of
complex numbers caters for such, by defining i = vV—1. Complex variables make
algebra simple, and the use of complex variables is an indispensable tool in the
modelling of financial markets.

ARITHMETIC OPERATIONS WITH COMPLEX NUMBERS

Addition: Add real parts; add imaginary parts.
Zz = 21 + 7z, = (aq + bii) + (a, + byi)
= (a; + az) + (by + by)i

Subtraction: Subtract real parts; subtract imaginary parts
Zy = 71 — 23 = (a1 + byi) — (ag + byi)
= (a; — az) + (by — by)i

Multiplication: Use the distributive property and remember that i2 = —1.
Zs =71 X 2y = (aq + byi) X (ay + byi)
= (aya; — b1b;) + (a1 by + azby)i

Division: Multiply both the numerator and denominator by the complex

conjugate of the denominator, then simplify
Z1  Z1 2

26 = — = —
V4 Zy Zp
It is like the method for rationalising a surd.
Note here that if z; = a + bi, and z, = a — bi then z, is said to be the complex
conjugate of z;. If z; = -3+ 4i and z, = —3 — 4i, then z,is said to be the
complex conjugate of z;.

Square Root
(a £ bi)? = (a® — b?) £ 2ab(i)
Therefore,

‘ a + bi = +/(a? — b?) + 2ab(i) ‘

Absolute Value or Modulus: The modulus of z; = |z].
If z, = a + bi, then

‘ |Z1|=\/a2+b2 ‘
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¥ EXAMPLE 32.1

Ifzy =2 —3iand z, = -5 — 4i,evaluate a)z; +2z, b) z —2z,
SOLUTIONtips

Q) z+2, = (24 (=5)) + (=3 + (—4)i = -3 —7i
b) 21—z, = (2— (=5)) + (-3 — (—4)i = 7 +1i

¥ EXAMPLE 32.2
Evaluate

Q) (L+3D2—0) b)(%+%i) (;+8i)

SOLUTIONtips

a)(1+3)R2-i)=2—-i+6i—3i>=2+5i—3(-1)=5+5i i?2=-1
b(1+1')(3+8‘)—3+4‘+3'+2‘2—3+35‘+2( 1) = 5+35'
Watzl)\g+8i)=gtaitgi+2i =g+l ~T37g!

M EXAMPLE 32.3
Find z; + z, whenz; =4+ 3iandz, =1—1i.

SOLUTIONtips

4+3i

1-i

The complex conjugate of z; is z, = 1 + i. Multiply both the numerator and
denominator by the complex conjugate of the denominator.

Z4 2y =

4+ 3 1+i_4+4i+3i+3i2

- = X = '2=_1
AT T4 1- 2 '
_147i_ 17
T2 T277

M EXAMPLE 32.4
Find z; + z, whenz; =1+ 6iandz, =4 +i.

SOLUTIONtips

(1+6)(A—10) 4—i+24i— 62
Z1+Z = =

2T G+D@-0 16 — i2
_10+23i 10 23

7 17 17!

M EXAMPLE 32.5
IfZl =34 2i. Find |21|.

SOLUTIONtips

lzi] =VaZ + b2 =v32+22=+/9+4 =+13

M EXAMPLE 32.6
Find the square root of 8 - 6i.

SOLUTIONtips

Let z2 = (a — bi)? = 8 — 6i
(a® = b?) + 2ab(i) = 8 — 6i
Compare real parts and imaginary parts,
a?-b>=8 (1)
2ab = —6 (2)
Solve (1) and (2) simultaneously:
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