

CONTENTS

Arithmetic Operations with Complex Numbers	293
Distance in the Complex Plane	295
Midpoint in the Complex Plane	295
Argand Diagrams	296
Polar Form	296
Exponential Form	296

Complex numbers are numbers that include a real part and an imaginary part, and they can be represented in the form a + bi, where a and b are real numbers, and i is the imaginary unit, satisfying the equation $i^2 = -1$.

If we have $x^2 + 1 = 0$, there is no solution for x in real numbers. The set of complex numbers caters for such, by defining $i = \sqrt{-1}$. Complex variables make algebra simple, and the use of complex variables is an indispensable tool in the modelling of financial markets.

ARITHMETIC OPERATIONS WITH COMPLEX NUMBERS

Addition: Add real parts; add imaginary parts.

$$z_3 = z_1 + z_2 = (a_1 + b_1 i) + (a_2 + b_2 i)$$

= $(a_1 + a_2) + (b_1 + b_2)i$

Subtraction: Subtract real parts; subtract imaginary parts

$$z_4 = z_1 - z_2 = (a_1 + b_1 i) - (a_2 + b_2 i)$$

= $(a_1 - a_2) + (b_1 - b_2)i$

Multiplication: Use the distributive property and remember that $i^2 = -1$.

$$z_5 = z_1 \times z_2 = (a_1 + b_1 i) \times (a_2 + b_2 i)$$

= $(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i$

Division: Multiply both the numerator and denominator by the complex conjugate of the denominator, then simplify

$$z_6 = \frac{z_1}{z_2} = \frac{z_1 \ \bar{z}_2}{z_2 \ \bar{z}_2}$$

 $z_6=\frac{z_1}{z_2}=\frac{z_1}{z_2}\frac{\bar{z}_2}{\bar{z}_2}$ It is like the method for rationalising a surd.

Note here that if $z_1 = a + bi$, and $z_2 = a - bi$ then z_2 is said to be the complex conjugate of z_1 . If $z_1 = -3 + 4i$ and $z_2 = -3 - 4i$, then z_2 is said to be the complex conjugate of z_1 .

Square Root

$$(a \pm bi)^2 = (a^2 - b^2) \pm 2ab(i)$$

Therefore,

$$a \pm bi = \pm \sqrt{(a^2 - b^2) \pm 2ab(i)}$$

Absolute Value or Modulus: The modulus of $z_1 = |z_1|$.

If $z_1 = a + bi$, then

$$|z_1| = \sqrt{a^2 + b^2}$$

EXAMPLE 32.1 If
$$z_1 = 2 - 3i$$
 and $z_2 = -5 - 4i$, evaluate a) $z_1 + z_2$ b) $z_1 - z_2$

SOLUTIONtins

a)
$$z_1 + z_2 = (2 + (-5)) + (-3 + (-4)i = -3 - 7i)$$

b) $z_1 - z_2 = (2 - (-5)) + (-3 - (-4)i = 7 + i)$

b)
$$z_1 - z_2 = (2 - (-5)) + (-3 - (-4)i = 7 + i)$$

☑ EXAMPLE 32.2

Evaluate

a)
$$(1+3i)(2-i)$$
 b) $(\frac{1}{2}+\frac{1}{4}i)(\frac{3}{2}+8i)$

SOLUTIONtips

a)
$$(1+3i)(2-i) = 2-i+6i-3i^2 = 2+5i-3(-1) = 5+5i$$
 $i^2 = -1$ b) $\left(\frac{1}{2} + \frac{1}{4}i\right)\left(\frac{3}{2} + 8i\right) = \frac{3}{4} + 4i + \frac{3}{8}i + 2i^2 = \frac{3}{4} + \frac{35}{8}i + 2(-1) = -\frac{5}{4} + \frac{35}{8}i$

EXAMPLE 32.3 Find $z_1 \div z_2$ when $z_1 = 4 + 3i$ and $z_2 = 1 - i$.

SOLUTIONtips

$$z_1 \div z_2 = \frac{4+3i}{1-i}$$

The complex conjugate of z_1 is $\bar{z}_2 = 1 + i$. Multiply both the numerator and denominator by the complex conjugate of the denominator.

$$\begin{split} z_1 \div z_2 &= \frac{4+3i}{1-i} \times \frac{1+i}{1+i} = \frac{4+4i+3i+3i^2}{1-i^2} \\ &= \frac{1+7i}{2} = \frac{1}{2} + \frac{7}{2}i \end{split} \qquad \qquad i^2 = -1 \end{split}$$

EXAMPLE 32.4 Find $z_1 \div z_2$ when $z_1 = 1 + 6i$ and $z_2 = 4 + i$.

SOLUTIONtips

$$\begin{split} z_1 \div z_2 &= \frac{(1+6i)(4-i)}{(4+i)(4-i)} = \frac{4-i+24i-6i^2}{16-i^2} \\ &= \frac{10+23i}{17} = \frac{10}{17} + \frac{23}{17}i \end{split}$$

☑ EXAMPLE 32.5

If $z_1 = 3 + 2i$. Find $|z_1|$.

SOLUTIONtips

$$|z_1| = \sqrt{a^2 + b^2} = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}$$

☑ EXAMPLE 32.6

Find the square root of 8 - 6i.

SOLUTION tips

Let
$$z^2 = (a - bi)^2 = 8 - 6i$$

 $(a^2 - b^2) + 2ab(i) = 8 - 6i$

Compare real parts and imaginary parts,

$$a^2 - b^2 = 8 (1)$$

2ab = -6(2)

Solve (1) and (2) simultaneously:

Purchase the full book at: https://unimath.5profz.com/

We donate 0.5% of the book sales every year to charity, forever. When you buy University Mathematics (I & II) you are helping orphans and the less privileged.