QUADRATIC EQUATIONS

CONTENTS

Standard Form	47
Factoring	48
Completing the Square	48
The Quadratic Formula	49
Graphing Quadratic Functions	51
Steps to Graphing Quadratic equations	51
The Discriminant	52
Word Problems to Quadratic Equations	54

STANDARD FORM

A **quadratic equation** is an equation of the second degree; it contains at least one term that is squared. The standard form is $ax^2 + bx + c = o$, where *a*, *b*, and *c* are numerical coefficients; *x* is an unknown variable.

The standard form of a quadratic equation:

$$ax^2 + bx + c = 0$$

Where *a*, *b*, and *c* are integers and $a \neq 0$

Quadratic equations commonly appear in various areas of mathematics, physics, engineering, and other sciences. They are used to model a wide range of phenomena, including projectile motion, optimization problems, and electrical circuits.

The form $ax^2 + c = 0$, where b = 0.

This is the simplest quadratic equation to solve. You can easily solve this using the Square Root Property.

☑ EXAMPLE 6.1

Solve (a) $4x^2 - 16 = 0$ (b) $8x^2 - 18 = 0$ SOLUTION tips a) Divide both sides by 4 $\frac{4x^2}{4} = \frac{16}{4}$ $x^2 = 4$ Take the square root of both sides $\sqrt{x^2} = \sqrt{4}$ Thus $x = \pm 2$ b) Divide both sides by 8 $\frac{8x^2}{8} = \frac{18}{8}$ $x^2 = \frac{9}{4}$ Take the square root of both sides $\sqrt{x^2} = \sqrt{\frac{9}{4}}$ Take the square root of both sides $\sqrt{x^2} = \sqrt{\frac{9}{4}}$ Take the square root of both sides

x = 0 or x = 11

The form $ax^2 + bx = 0$, where c = 0.

x = 0 or x = 4

This can be solved by factoring.

The form $ax^2 + bx + c = 0$.

To solve these types of quadratic equations, you have three options, (1) to use Factoring; (2) to Complete the Square, or (3) to use the Quadratic Formula.

FACTORING

A quadratic equation can easily be solved by factoring if it is factorable. To factorise a quadratic equation, look for two numbers a and b whose sum is (a + b) and whose products is ab.

$$x^{2} + (a + b)x + ab = (x + a)(x + b)$$

☑ EXAMPLE 6.3

Solve $x^2 - 6x + 5 = 0$

SOLUTION tips

Look for two numbers whose product is *coefficient* of $x^2 \times 5 = 5$ and whose sum is -6.

The two numbers are -1 and -5 because (-1) + (-5) = -6 and $(-1) \times (-5) = 5$ Replace -6*x* with -1x - 5x $x^2 - 1x - 5x + 5 = 0$

Factorise

 $x(x-1) - 5(x-1) = 0 \rightarrow (x-1)(x-5) = 0$ $x-1 = 0 \quad x-5 = 0 \rightarrow x = 1 \text{ or } x = 5$

\square EXAMPLE 6.4

Solve $2x^2 - 7x - 4 = 0$

SOLUTION tips

Look for two numbers whose product is *coefficient of* $x^2 \times -4 = -8$ and whose sum is -7. The two numbers are -8 and 1 because (-8) + 1 = -7 and $(-8) \times 1 = -8$

Replace -7x with -8x + 1x $2x^2 - 8x + 1x - 4 = 0$ Factorise $2x(x - 4) + 1(x - 4) = 0 \rightarrow (2x + 1)(x - 4) = 0$ $2x + 1 = 0 \quad x - 4 = 0 \rightarrow x = -1/2 \text{ or } x = 4$

COMPLETING THE SQUARE

Completing the square is a useful method for solving quadratic equations and is often used when factoring is not immediately applicable.

The form $ax^2 + bx + c = 0$ where a = 1

 Purchase the full book at: <u>https://unimath.5profz.com/</u>

We donate 0.5% of the book sales every year to charity, forever. When you buy **University Mathematics (I & II)** you are helping orphans and the less privileged.