

☑ CONTENTS

Sequences	77
Arithmetic Progression	77
Geometric Progression	79
Sum of an Infinite Geometric Series	81
Sigma Notation of a Series	82

SEQUENCES

Sequence is a set of numbers arranged in order by some particular rule. For example,

1, 3, 5, 7, 9,	

1	1	1	1	
2	' 4	' <u>8</u> '	16'	•••

Consider the sequence a₁, a₂, a₃, ..., a_n.

 a_1 is the first term, a_2 is the second term, a_3 is the third and so on. A **finite sequence** has a limited number of terms e.g., 2, 4, 6, 8, 10. An **infinite sequence** has unlimited number of terms e.g., 1, 3, 5, 7, 9, ...

ARITHMETIC PROGRESSION

An **arithmetic progression** (AP) is a sequence where the difference in consecutive terms is constant. The sequence 5, 7, 9, 11, 13, 17 is an example of an AP. The sequence starts with 5 and thereafter each term is 2 more than the previous one. This difference of 2 is called the **common difference**. The sum of an arithmetic sequence is called an **arithmetic series**.

 Table 9.1 Formulae for Arithmetic Progression

n th term of an AP	$a_n = a_1 + (n-1)d$
Sum of n terms in an AP	$S_n = \frac{n}{2} [2a_1 + (n-1)d]$
Sum of n terms in an AP when the first and last terms are known	$S_n = \frac{n}{2}(a_1 + a_n)$

 a_1 = the first term, a_n = the last term, d = the common difference.

☑ EXAMPLE 9.1

In an AP, the first term is 15 and the common difference is -2. Find a) the 6th term b) the sum of the first 10 terms.

SOLUTIONtips

a)
$$a_1 = 15, n = 6, d = -2$$

 $a_n = a_1 + (n - 1)d$
 $a_6 = 15 + (6 - 1)(-2)$
 $= 5$
b) $n = 10$
 $S_n = \frac{n}{2}[2a_1 + (n - 1)d]$
 $S_{10} = \frac{10}{2}[2(15) + (10 - 1)(-2)] = 60$

Ø EXAMPLE 9.2

An arithmetic progression has 10 as its first term. Also, its 23^{rd} term is $\frac{6}{25}$ of its 99th term. Find the common difference.

SOLUTION tips

 $a_{1} = 10$ $a_{n} = a_{1} + (n - 1)d$ When n = 99: $a_{99} = 10 + (99 - 1)d = 10 + 98d$ When n = 23: $a_{23} = 10 + (23 - 1)d = 10 + 22d$ But $a_{23} = \frac{6}{25} (a_{49})$ $10 + 22d = \frac{6}{25} (10 + 98d)$ Simplify $25(10 + 22d) = 6(10 + 98d) \rightarrow d = 5$

\square EXAMPLE 9.3

Find the sum of the series $7 + 16 + 25 + \cdots$ to 15 terms.

SOLUTIONtips

Here
$$a_1 = 7$$
, $d = 16 - 7 = 9$, $n = 15$
 $S_n = \frac{n}{2} [2a_1 + (n - 1)d]$
 $S_{10} = \frac{15}{2} [2(7) + (15 - 1)9] = 1050$

☑ EXAMPLE 9.4

The income of Ms Noe is \$3,000 in the first year and she receives an increase of \$100 per year. Find the total amount she receives in 15 years.

SOLUTION tips

Here, we have

a₁ = 3000, d = 100, n = 15

$$S_n = \frac{n}{2} [2a_1 + (n-1)d]$$

$$S_{15} = \frac{15}{2} [2(3000) + (15-1)100] = 55,500$$

\square EXAMPLE 9.5

Makanaki repays her mortgage of \$662,500 by \$1,000 in the first monthly instalment and then increases the payment by \$500 in every instalment. How many instalments will it take her to pay off the mortgage?

SOLUTIONtips

By the given conditions, we have Here $a_1 = 1000$, d = 500, $S_n = 662500$ $S_n = \frac{n}{2}[2a_1 + (n - 1)d]$ $662500 = \frac{n}{2}[2(1000) + (n - 1)(500)]$ Multiply both sides by 2 1325000 = n[2(1000) + (n - 1)(500)]Simplify $500n^2 + 1500n - 1325000 = 0$ Divide both sides by 500 $n^2 + 3n - 2650 = 0$ Purchase the full book at: <u>https://unimath.5profz.com/</u>

We donate 0.5% of the book sales every year to charity, forever. When you buy **University Mathematics (I & II)** you are helping orphans and the less privileged.