

CONTENTS

Sets	10
Set Operations	11
Fundamental Laws of Set Algebra	12
Venn Diagrams	13
Word Problems on Sets and Venn Diagrams	14

Sets

Georg Cantor, a German mathematician, is widely credited with the development of set theory. A set is a collection of items or **elements**. A set can be defined by listing the elements of the set, enclosed in curly brackets as follows: {1, 2, 3, 4}. Some examples of sets:

Natural numbers: $N = \{1, 2, 3, ...\}$ Whole numbers: $W = \{0, 1, 2, 3, ...\}$ Integers: $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

Table 1.1 shows some of the various symbols used in set notation.

There are two methods of representing sets:

- roster form (listing elements enclosed in braces) and
- set-builder form (describing elements based on a common property).

Examples:

Roster form	Set-Builder Form
$X = \{1, 2, 3, 4, 5\}$	$X = \{x : x \text{ is a natural number and } x < 6\}$
$X = \{1, -2\}.$	$X = \{x : x \text{ is an integer and } x^2 + x - 2 = 0\}$
<i>X</i> = {1, 4, 9, 16, 25,}	$X = \{x : x \text{ is the square of a natural number}\}$
$X = \{P, R, I, N, C, E, L\}$	$X = \{x : x \text{ is a letter of the word PRINCIPLE}\}.$

Read the braces as "the set of all" and the colon as "such that".

Empty Set: An empty set, denoted by φ or {}, contains no elements. *Example:* A set of natural numbers between 1 and 2 is empty: {x : 1 < x < 2}.

Finite and Infinite Sets: Finite sets have a specific count of elements, while infinite sets continue indefinitely.

Example: The set of days in a week (finite) versus the set of natural numbers (infinite).

Equal Sets: Sets are equal if they contain the same elements. *Example:* Sets with the same elements, like {1, 2, 3} and {2, 2, 1, 3, 3}, are considered equal. Duplicates in sets do not affect the equality.

Subsets: A set A is a subset of set B if every element of A is also in B, denoted as $A \subset B$.

Example: A = $\{1, 2\}$, B = $\{1, 2, 3\}$. A \subset B because all elements of A are in B.

Power Set: The power set of a set A contains all possible subsets of A. *Example:* If $A = \{1, 2\}$, then $P(A) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$.

Symbol	Symbol Name	Meaning	Example
{}	Set	a collection of elements	$A = \{1, 2, 3, 6\}$ B = {3, 6}
	such that	so that	$\mathbf{A} = \{x : x \in \mathbb{R}, x < 0\}$
A∪B	Union	elements that belong to set A or set B	$A \cup B = \{1, 2, 3, 6\}$
A∩B	intersection	elements that belong to set A and set B	$A \cap B = \{3\}$
A⊂B	proper subset	A is a subset of B	$\{1, 2\} \subset \{1, 2, 3\}$
A⊄B	not subset	A is not a subset of B	$\{-1, 0\} \not\subset \{1, 2, 3\}$
2 ^A	power set	all subsets of A	
P(A)	power set	all subsets of A	
A=B	equality	A and B have the same members	$A = \{11, 12, 13\} \\B = \{11, 12, 13\} \\A = B$
Ac	complement	all the elements that do not belong to set A	
a∈A	element of	set membership	A = {1, 2, 3}, 1 \in A
<i>x</i> ∉ A	not element of	no set membership	A = $\{1, 2, 3\}, -2 \notin A$
{},Ø	empty set		$A = \{\}, A = \emptyset$
U	universal set	set of all possible values	
N	natural numbers	N = {0, 1, 2, 3,}	$o \in N$
Z	integer numbers set	Z = {2, -1, 0, 1, 2,}	-6 ∈ Z
Q	rational numbers set	$Q = \{x \mid x=a/b, a, b \in Z\}$	$2/6 \in Q$
R	real numbers set	$\mathbf{R} = \{x \mid -\infty < x < \infty\}$	6.343434 ∈ R

Table 1.1 Table of Set Notations

Universal Set: The universal set is the foundational set encompassing all elements relevant to a particular context or problem, denoted by U or ξ . *Example:* In human population studies, the universal set consists of all people in the world.

SET OPERATIONS

Union of sets: (denoted by \cup , called "union") The union of two sets contains all the elements in either sets. The symbol for union is \cup . Formally $x \in A \cup B$ if $x \in A$ or $x \in B$ (or both). i.e. $A \cup B = \{x : x \in A \text{ or } x \in B\}$.

Intersection of sets: (denoted by \cap , called "intersection") The intersection of two sets contains only the elements that are in both sets. The symbol for intersection is \cap . More formally, $x \in A \cap B$ if $x \in A$ and $x \in B$. i.e. $A \cap B = \{x : x \in A \text{ and } x \in B\}$

Complement of a set: (denoted by A^c, called "A complement") The complement of a set A contains everything not in set A. The symbol for A complement is A^c. It contains all the elements in the universal set that are not in A.

Purchase the full book at: <u>https://unimath.5profz.com/</u>

We donate 0.5% of the book sales every year to charity, forever. When you buy **University Mathematics (I & II)** you are helping orphans and the less privileged.